Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) MCA I Year I Semester Supplementary Examinations November-2020 DISCRETE MATHEMATICS

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 a Define tautology and contradiction with examples.6Mb Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$ 6MOR2 a Show that $P \to Q, P \to R, Q \to \neg R, P$ are inconsistent6M

b Show that
$$\forall x (P(x) \rightarrow Q(x)) \land \forall x (Q(x) \rightarrow R(x)) \Rightarrow \forall x (P(x) \rightarrow R(x)).$$
 6M

UNIT-II

3 Suppose that the white tiger population of Orissa forest is 30 at time n=0 and 32 at time 12M n=1 the increase from time (n-1) to time n is twice the increase from time (n-2) to time (n-1), find the tiger population at time n, hence find the tiger population when n=6.

OR

4 Solve
$$a_n - 4 a_{n-1} + 4a_{n-2} = (n+1)^2$$
 given $a_0 = 0$, $a_1 = 1$.
12M

5	a Let $*$ on R defined by $a*b=a+b+2ab$	$\forall a, b \in R.$		6 M
---	--	-----------------------	--	------------

- (i) Find (R,*) is semigroup.
- (ii) Find the identity element.
- (iii) Which elements have inverse and what are they?
- b Define abelian group, cyclic group? 6M

6State and prove the fundamental theorem on homomorphism of groups.12M

OR

UNIT-IV

- 7 a Show that the maximum number of edges in a simple graph with n vertices is 6M n (n-1)/2
 b Euclain graph coloring and chromatic number with suitable example.
 - **b** Explain graph coloring and chromatic number with suitable example6M

Q.P. Code: 19HS0836

9

OR

8 a Draw the graph represented by given Adjacency matrix

	1	2	0	1]		0	1	0	1]
	2	0	3	0		1	0	1	0
(1)	0	3	1	1	(11)	0	1	0	1
	1	0	1	0		1	0	1	0

b Determine whether the graphs G and H given below are isomorphic.

UNIT-V

6M	
6 M	

a Write the Properties of Treesb Give all the spanning trees of k₄

10 a Prove that for any positive integer n, if G is a connected graph with n vertices and n-1 edges, then G is a tree

OR

b Suppose a tree has n_1 vertices of degree 1, 2 vertices of degree 2, 4 vertices of **6M** degree 3, and three vertices of degree 4, find n_1 .

*** END ***

6M

6M